반응형 오블완20 [1페이지 논문읽기] SPDiffusion: Semantic Protection Diffusion for Multi-concept Text-to-image Generation 기존의 foundation 모델들은 multi object를 생성하는데 어려움을 겪고 있다. 예를 들어, 아래 그림에서 보듯, "초록색 옷을 입고 있는 토끼와 빨간 모자를 쓴 여우"를 그리라고 하면, 토끼만 두 마리를 그리거나 둘 다 초록색 옷을 입고 있는 이미지를 그려준다.이러한 문제를 해결해 멀티 object의 생성을 보다 잘 하게 해주는 연구가 있어 소개해본다. 기존 연구의 문제점서두에서 밝힌 것처럼, 기존 연구들은 object 간의 속성들이 섞이거나 제대로 그려지지 않는 "attribute confusion" 이슈가 있고, 이를 해결하기 위한 다양한 시도가 있었다.몇몇 연구들에서는 inference 때 latent representation을 optimize해서 텍스트와 이미지간의 연관성을 강제.. 2024. 11. 22. 딥러닝에서 GPU 성능 최적화: NVIDIA 가이드 완벽 분석 딥러닝 모델 학습과 추론에서 GPU 성능을 최적화하는 일은 효율성과 비용 절감을 위해 필수적입니다. NVIDIA의 GPU 성능 배경 사용자 가이드는 GPU 하드웨어 및 소프트웨어의 최적 활용을 위한 핵심 정보를 제공합니다. 이번 블로그에서는 이 가이드를 기반으로 딥러닝 GPU 성능 최적화의 주요 원칙과 전략을 상세히 소개합니다.1. GPU 아키텍처의 기본 이해스트리밍 멀티프로세서(SM)GPU는 수많은 병렬 연산을 처리하도록 설계되었습니다. NVIDIA GPU의 핵심은 **스트리밍 멀티프로세서(SM)**입니다.SM 구성 요소: 각 SM은 연산 장치(ALU), 메모리, 그리고 텐서 코어와 같은 고급 가속 장치로 구성됩니다.A100 예시: NVIDIA A100 GPU는 108개의 SM과 80GB HBM2 메모.. 2024. 11. 21. [1페이지 논문읽기] An Image is Worth Multiple Words: Multi-attribute Inversion for Constrained Text-to-Image Synthesis 원본 이미지가 있다면, AI는 원본이미지처럼 새로운 그림을 그릴 수 있을까? 원본이미지"처럼" 이라는 뜻은 무엇일까? 색감이 비슷하게? 비슷한 스타일로? 비슷한 오브제가? 사람도 답하기 힘든 이러한 질문에 답하듯 그림을 그려주는 연구가 있다. 2023년 Adobe 에서 발표한 An Image is Worth Multiple Words: Multi-ttribute Inversion for Constrained Text-to-Image Synthesis 논문인데, 어떤 문제를 어떤 방법으로 해결하는지 알아보자. 기존 연구의 한계점Stable diffusion 기반의 이미지 personalization 연구들이 디테일한 컨트롤이 어렵다는 한계점을 가지고 있어, controllability를 강화하는 방법.. 2024. 11. 20. [1페이지 논문읽기] ZipLoRA: Any Subject in Any Style by Effectively Merging LoRAs Style transfer task, 즉 이미지를 원하는 그림체 또는 색감으로 변환하는 문제를 해결하고자 한 논문이다. 어떠한 관점에서 문제를 바라보고 있고, 어떤 방법으로 task를 해결하고 있는지 알아보자. 아이디어Personalization task에 LoRA를 이용한 fine-tuning이 많이 사용되는데, 저자들은 LoRA를 이용해 style에 대한 정보를 학습할 수 있다면, 이를 style transfer task에 사용할 수 있다는 점에 착안했다.특히, 아래 2가지 observation에서 영감을 얻었다.1. LoRA finet-tuning을 통해 update된 matrix는 sparse하다.LoRA를 이용해 fine-tuning을 하게 되면, 기존의 weight 이외에 delta wei.. 2024. 11. 19. 이전 1 2 3 4 5 다음